Vowel weakening in Afro-Yungueño: Linguistic and social considerations

El debilitamiento vocálico en el español afroyungueño: Consideraciones lingüísticas y sociales

Sandro Sessarego
University of Wisconsin, United States
sessarego@wisc.edu

Abstract: Unstressed vowel weakening, a phenomenon ranging from partial devoicing to elision has been reported for Spanish dialects in the central Plateau region of Mexico (Boyd-Bowman 1952; Canellada & Zamora Vicente 1960; Lope Blanch 1972), and for the Andean regions of Bolivia (Gordon 1980), Peru (Delforge 2006, 2008a,b, 2009) and Ecuador (Lipski 1990). The present study provides a linguistic and social account of unstressed vowel weakening for a variety of Spanish spoken in the Andes: Afro-Yungueño (AY).

Keywords: Afroyungueño, vocalic reduction, H&H Theory.

Resumo: La reducción de las vocales átonas es un fenómeno lingüístico que caracteriza el español del altiplano mexicano (Boyd-Bowman 1952; Canellada & Zamora-Vicente 1960; Lope Blanch 1972) y de las regiones andinas de Bolivia (Gordon 1980), Perú (Delforge 2006, 2008a,b, 2009) y Ecuador (Lipski 1990). El presente trabajo prove un análisis lingüístico y social de dicho fenómeno en una variedad del español hablado en los Andes: el español afroyungueño.

Palavras-chave: Afroyungueño, reducción de las vocales átonas, teoría H&H.
1 Introduction

Unstressed vowel weakening, a phenomenon ranging from partial devoicing to complete elision, has been documented for several languages around the world (e.g., Japanese and Korean (Jun & Beckman 1993); Turkish (Jennedy 1995); Greek (Dauer 1980; etc.). This phenomenon is also well-known in Spanish since a number of Mexican and Andean dialects have been reported showing it (cf. Boyd-Bowman 1952; Canellada & Zamora Vicente 1960; Lope Blanch 1972 for the Mexican Plateau region; Gordon 1980 for Bolivia; Lipski 1990 for Ecuador; Delforge 2006, 2008a,b, 2009 for Peru). The current study provides an account of unstressed vowel weakening for a variety of Spanish spoken in the Andes, Afro-Yungueño (AY). AY is an Afro-Hispanic vernacular proceeding from what was once a bozal language spoken in Los Yungas, Department of La Paz, Bolivia. Phonetic results are correlated to social variables (gender, age), in an attempt to determine the internal and external factors regulating vowel weakening variability in the community under study. Results are further analyzed in light of the theoretical framework provided by Articulatory Phonology (Browman & Goldstein 1989), and Hypo & Hyperarticulated Speech Theory (H&H Theory) (Lindblom, 1990).

The rest of this paper is organized as follows: section 2 reports the main findings of previous studies on Spanish unstressed vowel weakening; section 3 provides a phonological and sociohistorical overview of Afro-Yungueño; section 4 presents the methodology adopted to collect the data; section 5 analyzes the results; section 6 discusses the findings; and lastly, section 7 concludes.

2 Previous studies on Spanish unstressed vowel weakening

This section concisely describes the main findings of other investigations that focused on Spanish unstressed vowel weakening. This will provide a means of comparison and a guideline for studying the same phenomenon in AY.

Lope Blanch (1972) analyzes the speech of 100 informants from Mexico City proceeding from a variety of social classes, with different levels of education and professions. He finds that vowel weakening is a common feature in the speech of his subjects but –quite surprisingly– he cannot detect any clear social factors patterning the variability (1972: 56). As for the linguistic analysis, he claims that it would be an oversimplification to describe this phenomenon as a ‘vowel presence/deletion’ dichotomy (contra Canellada & Zamora Vicente 1960). He indicates that vowel weakening acts on a scale, ranging from partial devoicing to complete elision, passing through a number of intermediate stages (1972: 57-58). He also firmly states that the most important factor affecting
vowel reduction is the surrounding consonantal environment, since voiceless sounds—especially /s/—favor vowel weakening (cf. also Boyd-Bowman 1952).

Gordon’s (1980) study on Bolivian Spanish was for the most part based on impressionistic observations. The author states that vowel weakening frequently affects unstressed /e/, followed by /o/, /a/ and /i/, especially in the /tVs/ environment. Lipski (1990) presents a more detailed account for the same phenomenon in Ecuadorian Spanish. His findings suggest that front vowels /e/ and /i/ are reduced the most, especially when in contact with /s/. The author provides the percentages of vowel deletion according to the vowel position in the word (in non-final syllable: /i/ 50%, /e/ 30%, /u/ 5%, and negligible rates for /a/ and /o/; in final syllable: /e/ 75%, /o/ 10% and /a/ 4%, and negligible rates for /i/ and /u/). Lipski (1990:13) also indicates that vowel reduction in final syllable occurs at higher rates due to the status of /e/ as the default vowel, and the morphological predictability of /o/ in first plural person verb conjugations (e.g. nosotros bailamos ‘we dance’).

Delforge (2006; 2009) offers a sociolinguistic analysis of unstressed vowel weakening in Cusco, Peru. Her findings suggest that this phenomenon used to be a common, neutral feature of Cusco Spanish, which in the last decades has become more stigmatized and—for this reason—it is quickly losing ground. In fact, while most middle-age informants present it to a certain extent, the speech of younger generations is not generally affected by it. Delforge (2008a) provides Cusco Spanish vowel reduction rates (/e/ 20%, /o/ 13%, /i/ 13%, /a/ 8%, and /u/ 5%) and indicates that adjacent voiceless segments favor vowel reduction. She accounts for this by adopting the theoretical framework proposed by Articulatory Phonology (Browman & Goldstein 1989), where syllable production is described in terms of coordination between articulatory gestures (cf. also Delforge 2008b). In fact, voiceless sounds—with late occurring glottal opening gestures—(e.g. fricatives), are inherently more likely to overlap the articulatory gesture of the following segment. Delforge (2008a) decides to exclude from her analysis the high frequency filler words pues ‘well’, entonces ‘then’ and digamos ‘let’s say’ since they tend to be systematically reduced in this Peruvian dialect. This was done in order to not overrate the vowel weakening frequency of the following contexts: [p_s], [s_s] and [m_s].

3 Brief sociohistorical and phonological overview of Afro-Yungueño Spanish

In recent years, linguists have debated the origin of AY. On one hand, it has been indicated that this language might once have been a creole that gradually decrcolized (Lipski 2008). On the other hand, it has been suggested that AY was probably the result of untutored second language acquisition strategies,
which could crystallize in the form of an advanced inter-language without ever being a true creole (Sessarego 2011). African slavery officially ended in Bolivia in 1826, immediately after the country’s independence from Spain. However, in practice, black Bolivians continued to work as unpaid peons until the Land Reform of 1952. After the Land Reform, the majority of Afro-Yungueños remained in the region and became the new owners of small land parcels that once belonged to the haciendas. Basic public education was introduced in Yungan communities in 1957; this factor, in addition to the higher degree of mobility achieved after the Land Reform, exposed Afro-Bolivians to other varieties of Spanish, so that some features of AY have gradually been displaced by more prestigious Highland Bolivian Spanish (HBS) ones (cf. Sessarego & Gutiérrez-Rexach 2011).

Lipski (2008: 69-80) identifies several phonological features which distinguish traditional AY from its surrounding Highland Bolivian Spanish dialects, and make it more similar to other Afro-Hispanic varieties spoken in Latin America. For the purposes of this study, it is important to note that traditional AY vowels are not generally weakened, this is in sharp contrast with the surrounding highland Bolivian dialects. On the other hand, AY consonants tend to be debilitated, while HBS ones are not. For example, a characterizing feature of AY is the aspiration/loss of syllable-final /s/, realized as [h] or omitted altogether (cf. Lipski 2008: 70), while the rate of retention of final /s/ in HBS is among the highest in the Spanish speaking world (Lipski 1983, 1984).

The systematic displacement of AY features in favor of HBS ones has been driven by sociolinguistic prestige (cf. Kroch 1978). Paradoxically, this process also introduced unstressed vowel weakening into this Afro-Hispanic dialect, which is not perceived as prestigious by the rest of the Andean society and is quite stigmatized (cf. Delforge 2006; 2009).

4 Methodology

4.1 Speakers

A total of twelve informants from the Afro-Bolivian communities of Chijchipa, Tocaña and Mururata in North Yungas were interviewed. The subjects were monolingual speakers of their dialect. They were born and raised in these communities, where they spent the majority of their lives. The speakers were selected to ensure that the study considered individuals coming from different groups based on two external factors: ‘generation’ and ‘gender’. Within the group ‘generation’, three different categories of speakers were formed according to their age: 21-35; 36-60; 61+. Within the factor group ‘gender’, the categories contrasted were ‘male’ vs. ‘female’. None of the informants, except for the youngest generation, had an education higher than a couple of years of primary school. Conversely, all informants belonging to the youngest generation attended secondary school.
4.2 Data collection and analysis

Interviews were conducted in silent rooms in the houses of the informants. Speakers were asked to talk freely, without any topic constraints in order to minimize the Observer’s Paradox (Labov 1972). Their speech was recorded using a Plantronics DSP microphone with a sampling rate of 44.1kHz. One and half minute sections of recordings were extracted from the final parts of the recorded conversations.

In order to get comparable data to the ones presented by Delforge (2008a:111), the high frequency filler words *pues* ‘well’, *entonces* ‘then’ and *digamos* ‘let’s say’ were not included in the sample. Moreover, I adopted a slightly modified version of Delforge’s vowel categorization (2008a:111). Vowels were classified as “partially devoiced” when their voice bar was not longer than half of their total duration (Figure 1); vowels were classified as “completely devoiced” when the length of their voice bar was more than half of their total length (Figure 2), and the vowel was classified as “apparently elided” when it couldn’t be observed in the spectrogram, as /o/ in *Estados* ‘states’ (Figure 3).

Fig. 1: Partially devoiced /i/ in *Yanqui* ‘Yankee’.

5 Results

5.1 Phonetic findings

Out of a total of 2,030 unstressed vowels in the sample, 66 (3.2%) were identified as reduced. These 66 segments could further be classified as: 47
(71.2%) ‘partially devoiced’, 12 (18.2%) ‘completely devoiced’, 7 (10.6%) ‘apparently elided’. The most commonly reduced vowels were /e/ and /o/ (40.9% and 33.3% respectively), while unstressed vowel weakening was less evident for the remaining ones: /u/ 16.7%, /i/ 13.6%, and /a/ 3.0%. Nevertheless, as Delforge (2008a:113) pointed out, since different vowels have different frequencies of appearance in the corpus, it is important to consider not only the percentage of reduction, but also the reduction rate (i.e. the number of reduced tokens of a vowel divided by the number of its occurrences in unstressed syllables). This information is provided in Table 1.

<table>
<thead>
<tr>
<th>Vowels</th>
<th>Number of Reduced Tokens</th>
<th>Percentage of Reduced Tokens</th>
<th>Rate of Reduced Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>/e/</td>
<td>27</td>
<td>40.9%</td>
<td>4.8%</td>
</tr>
<tr>
<td>/o/</td>
<td>22</td>
<td>33.3%</td>
<td>4.3%</td>
</tr>
<tr>
<td>/i/</td>
<td>9</td>
<td>13.6%</td>
<td>3.6%</td>
</tr>
<tr>
<td>/u/</td>
<td>6</td>
<td>16.7%</td>
<td>3.5%</td>
</tr>
<tr>
<td>/a/</td>
<td>2</td>
<td>3%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Tabela 1: Number, percentage and rate of vowels affected by UVR.

As noted in previous studies (Lipski 1990; Delforge 2008a), mid-vowels in final syllables were more affected than those in non-final syllable position,
with a more reduced effect on /o/. The vowel /a/ is almost never affected, independently of its position. High vowels, which are rare in syllable final position, tend to be more reduced in non-final syllables.

<table>
<thead>
<tr>
<th>Vowels</th>
<th>Reduced Rate by Syllable Position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-final</td>
</tr>
<tr>
<td>/e/</td>
<td>4.7%</td>
</tr>
<tr>
<td>/o/</td>
<td>0.5%</td>
</tr>
<tr>
<td>/i/</td>
<td>3.7%</td>
</tr>
<tr>
<td>/u/</td>
<td>3.5%</td>
</tr>
<tr>
<td>/a/</td>
<td>0%</td>
</tr>
</tbody>
</table>

Tabela 2: Rate of vowels affected by UVR in non-final and final syllables.

Table 3 shows the percentages of vowel reduction according to preceding and following contexts. As far as voiceless environments are concerned, results are in line with previous studies, in that they favor reduction more than voiced contexts. Vowel weakening appears to be more frequent when the voiceless
consonants preceding the vowel were /s/ (Reduction percentage: 25.76%) and /t/ (22.73%), and when /s/ followed it (Reduction percentage: 72.73%). These findings indirectly support Lope Blanch’s (1972) and Delforge’s (2008a) observations, who found 90% and 69% respectively of the reduced vowels adjacent to /s/. In the case of /\textit{ay}/, the overall percentage is 81%. Delforge (2008a: 114-115) argued that the percentage gap between her results and Lope Blanch’s was probably due to the fact that she excluded the discourse filler-words “\textit{pues} ‘well’, \textit{entonces} ‘then’ and \textit{digamos} ‘let’s say’” eliminating in this way highly frequent environments containing /s/. Table 3 also shows the results for voiced environments, which usually have been omitted in past studies (cf. Lipski 1990; Delforge 2008a). It is interesting to observe that vowel weakening also occurs in voiced contexts. In this case, the most favoring context appears to be proceeding /m/ (9.09%). In fact, 6 reduced vowels out of a total of 66 were preceded by /m/, all of them were found in the final syllable of first person plural verbs.

<table>
<thead>
<tr>
<th>Consonants</th>
<th>Reduction Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_</td>
</tr>
<tr>
<td>Voiceless Sounds</td>
<td></td>
</tr>
<tr>
<td>Stops</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td>k</td>
</tr>
<tr>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Affricates</td>
<td>tf</td>
</tr>
<tr>
<td></td>
<td>tc</td>
</tr>
<tr>
<td>Fricatives</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>c</td>
</tr>
<tr>
<td>Voiced Sounds</td>
<td></td>
</tr>
<tr>
<td>Stops</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>g</td>
</tr>
<tr>
<td>Nasals</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Vowel</td>
<td>e</td>
</tr>
<tr>
<td>Pause</td>
<td>_</td>
</tr>
</tbody>
</table>

Tabela 3: Consonant contexts of reduction.

The 66 vowels affected, corresponding to 66 tokens, were found in 52 different word types, the most common being: ‘\textit{ustedes} ‘you pl.’ and ‘\textit{bonitos} ‘nice ones’ encountered three times each in the corpus. Moreover, at the morpheme level, besides the 6 tokens encountered in first person plural verbs (e.g. ‘\textit{tomamos} ‘we drink’), 17 tokens were found in the plural marker –\textit{es} on irregular nouns (e.g. ‘\textit{patrones} ‘owners’), 15 were masculine -\textit{o} markers on nouns and adjectives (e.g. ‘\textit{dos chicos peruanos} ‘two Peruvian guys), while the rest of the reduced vowels belonged to the morphological roots of several different grammatical categories (e.g. ‘\textit{yanqui} ‘Yankee’).
5.2 Social findings

Vowel weakening in AY affects unstressed segments at a much lower rate (3.2%) than in the relatively close Cusco variety (9.9%) (Delforge 2008a: 110). This is probably due to the fact that Delforge chose the 8 most vowel-reducing informants (mainly males) out of a sample of 180 subjects, while I inspected the speech of 12 speakers (grouped according ‘gender’ and ‘generation’), without selecting only those strongly presenting unstressed vowel weakening. Unstressed vowel weakening is almost absent in the speech of the eldest speakers (2.0%), it is a distinctive linguistic feature of middle-aged individuals (4.6%), and it is more reduced in the speech of the youngest generation (3.1%). The factor ‘generation’ shows a significant effect on the data analyzed (χ^2 (df 2, n 2030) = 7.156, $p=.028$), especially when we contrast tokens from the old and the middle groups (χ^2 (df 1, n 1365) = 7.034, $p=.008$) (see Figure 4).

![Unstressed Vowel Weakening across Generations](image)

Fig. 4: UVR distribution across generations.

Overall, the factor ‘gender’ does not have a significant effect (χ^2 (df 1, n 2030) = 2.847, $p=.092$). Women have a higher rate of reduction (3.9%), while men present a lower one (2.6%). However, a closer look at the data reveals an interesting pattern: women from the old and middle generations significantly favor vowel weakening over men (χ^2 (df 1, n 1366) = 4.474, $p=.034$) while in the youngest generation, men slightly favor it, even though the effect is not statistically significant (χ^2 (df 1, n 665) = .86, $p=.770$) (see Figure 5).
6 Discussion

Unstressed vowel weakening in Ay manifests itself as a continuum of phenomena, ranking from partial devoicing to elision. In line with many of the other studies on the topic, preceding voiceless segments appear to favor vowel reduction (cf. Beckman & Shoji 1984; Lipski 1990; Tsuchida 1997; Chitoran & Babaliyeva 2007; etc.). This phenomenon has recently been explained for Cusco Spanish by Delforge (2008a,b) within the theoretical framework provided by Articulatory Phonology (Browman & Goldstein 1989). According to this model, basic phonological units can be described as abstract gestural representations with a specific time of realization. The production of sounds consists of organized combinations of gestures ‘constellations’, which may overlap to different extents. When we apply these ideas to the production of cv sequences, we may imagine gestural overlap being favored or disfavored depending on a variety of linguistic factors. When the vowel gesture is long (e.g. low and stressed) a non-overlapped cv sequence is likely to obtain. When the vowel has a shorter duration (e.g. high and unstressed), articulatory overlap is more likely to happen. The susceptibility of high vowels to undergo vowel weakening has also been pointed out by Chitoran and Babaliyeva (2007) for Lezgian, where the inherently shorter duration of /i/ and /u/ with respect to [-high] vowels makes them easier to devoice and delete. However, Ay, as the rest of the Spanish dialects in which the phenomenon has been reported, differs
from Lezgian, Japanese and Korean in that mid-vowels present the highest rate of reduction. Lipski (1990) suggests that the frequent devoicing of /e/ in Ecuadorian Spanish is due to its [+coronal] and [+continuant] specifications—also shared by /s/- with which /e/ co-occurs frequently (especially in plural morphemes). In his view, due to a decrease in sonority, /e/ would lose its [-consonant] feature; this would eventually lead to its reduction. Delforge (2008a) elaborates on Lipski’s idea by suggesting a model able to account for both the high rate of /e/ reduction (20%) and the comparatively less frequent cases of /o/ reduction (13%) in her data. She bases her proposal on Hall’s (2004) model of vowel intrusion as the result of gestural overlap, which proposes a way to express the interaction of front vowels and coronal consonants as well as back vowels and velar consonants. In light of Hall’s (2004) work on the special status of homorganic CV pairs, Delforge suggests that devoicing would be favored by /e/ occurring with coronal /s/ and /t/, rated as the most frequently occurring voiceless segments in Spanish (Quilis & Esgueva 1980), with a rate of 18.6% and 8.6% respectively, while the back mid-vowel /o/ would be able to overlap to a similar extent only with the consonants /k/ and /x/, which are by far less common in the spoken language (7.6% and 1% respectively). Delforge offers an important new account for unstressed vowel weakening in Spanish, nevertheless she does not completely explain why /o/ reduction shows such an asymmetrical distribution with 18.0% in word-final syllable and 1.5% in non-final syllable for Cusco Spanish (cf. Delforge 2008a: 113) and 6.7% and 0.5% for AY (see Table 2). My data show that /o/ can be reduced in final syllable even if preceded by /m/, a voiced consonant, encountered in 1st person plural verbs (6 tokens), and in several nouns and adjectives where it acts as a masculine gender marker (15 tokens) (cf. Harris 1991). Moreover, the morphological type count revealed that 17 reduced /e/ tokens in final syllable were also parts of the plural –es morpheme on nouns. These findings are in line with Lipski’s (1990: 13) claim that “in the final syllable, UVR is given additional momentum by the status of /e/ as the default vowel, and by the morphologically predictable status of most instances of /o/, occurring in the final syllable of first plural person verbs”. Lipski’s (1990) data appear to back the idea that predictable morphological contexts play a role in regulating vowel reduction patterns. In addition, Delforge’s (2008a) choice to remove from her sample highly frequent words because of it leading to categorical weakening indirectly suggests that frequency must be a key factor too. For these reasons, besides the elements identified by Delforge (2008a), it appears to be reasonable to suggest a possible mediation of word frequency and morphological predictability to account for these cross-dialectal cases of vowel weakening. This, in turn, may also provide a rational explanation for why the segment /o/—often occurring as a masculine marker—presents relatively higher rates of reduction in final syllable position, when compared
to other vowels. H&H Theory considers speech variability as the result of a human adaptive device, which is regulated by the interplay of production- and perception-oriented factors (Lindblom 1990). A fundamental assumption of H&H Theory is that speakers tend to maximize sound discriminability while minimizing effort. Within this framework, morphological predictability and word frequency are key factors affecting phonetic production. In line with this reasoning, if a morpheme is highly predictable or a word is highly frequent, the effort put in the articulation of their sounds will be minimized, leading, in this specific case, to possible vowel reduction. A variety of studies have reported effects on vowel space expansion mediated by word frequency of use and phonological neighborhood density for languages like English (e.g. Munson & Solomon 2004; Munson 2007) with a ‘crowded’ vowel space. Similar results have not been reported for Spanish, whose vowel space contains only five vowels. Nevertheless, tests considering clear vs. conversational speech could find significant vowel space modification also in this language (Bradlow 1995). In light of these results, future sociophonetic studies focusing on unstressed vowel reduction, not only in Spanish, but also in the rest of the languages presenting this phenomenon, may find it useful to account also for word frequency and morphological predictability as factors potentially patterning vowel reduction variability. Delforge (2006) suggested that unstressed vowel weakening was probably a common feature of Cusco Spanish, which has become stigmatized during the last decades. As a result, it is quickly losing ground and it is virtually absent in the speech of the youngest generations. My personal intuitions, as a linguist who spent several years in Bolivia and had the possibility to talk to people of different ages and different social classes, is that such extra-linguistic correlates for Cusco Spanish apply also to the nearby highland Bolivian region. The low rate of unstressed vowel reduction in the speech of the youngest Afro-Bolivian informants might be interpreted as the result of the more intense exposure to Highland Bolivian Spanish experienced by this generation. In fact, the 21-35 generation is the one that received the highest level of education in the communities (all the informants attended the secondary school), and therefore presumably the one which had more contact with Highland Bolivian Spanish. In previous studies on AY syntactic features (e.g. Sessarego & Gutiérrez-Rexach 2011), it has been suggested that the youngest generations are converging towards adopting HBS grammar, which differs significantly from the traditional vernacular employed by the eldest members of the community. It would not be surprising if also their phonological features were closer to the ones of HBS speakers, in this case, to those of the young highland population, which as Delforge (2006) pointed out, does not present much vowel reduction. On the other hand, the low rate of vowel weakening in the speech of the eldest generation, especially men, might be explained as a result of the segregation imposed by the hacienda system.
Until 1952, in fact, Afro-Bolivians did not have much contact with the rest of the Andean world; they were bound to the plantations and could not attend schools. Such condition is mirrored in the speech of the over sixty informants, who speak a dialect with a syntax and phonology which departs significantly from the rest of the Andean Spanish varieties (Lipski 2008). As Lipski (2007) reported, when questioned about the traditional dialect, many Afro-Bolivians refer to it as a not ‘civilized’ form of speech. Due to the stigma attached to this vernacular, many speakers are dropping its use, and are systematically substituting its features with “more civilized” Highland Bolivian Spanish ones. This process appears to be more marked in the speech of women, who might –consciously or not– show vowel reduction more frequently in the attempt to approximate to the HBS speech. In fact, if until recently unstressed vowel weakening was a neutral characteristic in Andean Spanish (Delforge 2006), the adoption of such a feature might have been perceived by Afro-Bolivians as an indicator of ‘civilization’. In line with this reasoning, it is therefore not surprising to find a significant distinction between the old and the middle generations in the use of vowel weakening. The differences in the rate of reduction reported for males vs. females are more marked in the speech of the middle generation, which was the first one to be born free, and possibly felt the need to blend in, at least linguistically, with the rest of the highland population. It is also interesting to notice how women’s vowel reduction drops drastically from the middle to the young generation, when presumably reduction became stigmatized. Indirectly, these results seem to support the findings of many well-known works on language and gender (Labov 1990; Eckert & McConnell-Ginet 2003), which indicate that female speakers tend to adopt a more formal, less stigmatized form of speech.

7 Conclusion

In this paper, an analysis of unstressed vowel weakening in Afro-Yungueño has been provided. Linguistic factors such as vowel category, syllable position in the word, and phonological environment have an effect on this phenomenon, which manifests itself in different phonetic results (i.e. partial devoicing, complete devoicing, apparent elision). The account given by Delforge (2008a), who relies on the theoretical framework of Articulatory Phonology (Browman & Goldstein 1989), has been implemented by the speech model provided by H&H Theory (Lindblom 1990) and it has been suggested that word frequency and morphological predictability may play a key role in patterning the variation. Several social findings have been reported too. Unstressed vowel weakening is limited in the speech of the eldest speakers; we found a significant increase of it in the middle-aged population, and a relative decrease in the youngest generation. Gender distinction seems to pattern the variation too, with women leading the change always in the direction of the less stigmatized form of speech, which appears to have changed during the life span of the three generations analyzed.
References

Sessarego, S. & J. Gutiérrez-Rexach. 2011. A minimalist approach to gender agreement in the Afro-Bolivian DP: Variation and the specification of

__

Recebido em: 15/02/2012
Aceito em: 14/05/2012